Published in

IOS Press, Main Group Chemistry, 2(22), p. 313-327, 2023

DOI: 10.3233/mgc-220077

Links

Tools

Export citation

Search in Google Scholar

Amentoflavone derivatives against SARS-CoV-2 main protease (MPRO): An in silico study

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Globally, novel coronavirus (nCoV19) outbreak is a great concern to humanity owing to the unavailability of effective medication or vaccine to date. Therefore, the development of drugs having anti-COVID-19 potential is a need of time. In this milieu, in-silico studies have proven to be rapid, inexpensive and effective as compared to other experimental studies. Evidently, natural products have shown significant potential in drug development to curtail different ailments, which have opened a new horizon in the screening of anti-COVID-19 agents. In this study, in-silico analysis were performed on derivatives of amentoflavone (4′, 4′′′-Dimethylamentoflavone, 4′′′, 7-Di-O-Methylamentoflavone, 4′′′′′′-methylamentoflavone, 4′-Monomethylamentoflavone, 7,4′-Dimethylamentoflavone, 7′-O-Methylamentoflavone, 7-O-methylamentoflavone, Heveaflavone, kayaflavone, and Sciadopitysin) and FDA approved anti-viral drug (camostatmesylate). All the derivatives of amentoflavone and FDA-approved anti-viral drugs were docked against SARS-CoV2 main protease (MPRO). The ten derivatives of amentoflavone showed strong interactions with the MPRO protein. In all cases, derivatives of amentoflavone showed good interaction with the targeted protein and better binding/docking score (–9.0351, –8.8566, –8.8509, –8.7746, –8.6192, –8.2537, –8.0876, –7.9501, –7.6429, and –7.6248 respectively) than FDA approved anti-viral drug. Therefore, derivatives of amentoflavone may be potent leads in drug discovery to combat HCoVs, such as SARS-CoV2. Moreover, to support the outcomes of this study further in-vivo investigations are required.