Published in

MDPI, International Journal of Molecular Sciences, 19(23), p. 11548, 2022

DOI: 10.3390/ijms231911548

Links

Tools

Export citation

Search in Google Scholar

Anti-Viral Photodynamic Inactivation of T4-like Bacteriophage as a Mammalian Virus Model in Blood

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The laboratorial available methods applied in plasma disinfection can induce damage in other blood components. Antimicrobial photodynamic therapy (aPDT) represents a promising approach and is approved for plasma and platelet disinfection using non-porphyrinic photosensitizers (PSs), such as methylene blue (MB). In this study, the photodynamic action of three cationic porphyrins (Tri-Py(+)-Me, Tetra-Py(+)-Me and Tetra-S-Py(+)-Me) towards viruses was evaluated under white light irradiation at an irradiance of 25 and 150 mW·cm−2, and the results were compared with the efficacy of the approved MB. None of the PSs caused hemolysis at the isotonic conditions, using a T4-like phage as a model of mammalian viruses. All porphyrins were more effective than MB in the photoinactivation of the T4-like phage in plasma. Moreover, the most efficient PS promoted a moderate inactivation rate of the T4-like phage in whole blood. Nevertheless, these porphyrins, such as MB, can be considered promising and safe PSs to photoinactivate viruses in blood plasma.