Published in

Oxford University Press, EP Europace, 2(25), p. 767-774, 2022

DOI: 10.1093/europace/euac202

Links

Tools

Export citation

Search in Google Scholar

Sense-B-noise: an enigmatic cause for inappropriate shocks in subcutaneous implantable cardioverter defibrillators

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractAimsSubcutaneous implantable cardioverter defibrillators (S-ICDs) are well established. However, inappropriate shocks (IAS) remain a source of concern since S-ICDs offer very limited troubleshooting options. In our multicentre case series, we describe several patients who experienced IAS due to a previously unknown S-ICD system issue.Methods and resultsWe observed six patients suffering from this novel IAS entity. The IAS occurred exclusively in primary or alternate S-ICD sensing vector configuration (therefore called ‘Sense-B-noise’). IAS were caused by non-physiologic oversensing episodes characterized by intermittent signal saturation, diminished QRS amplitudes, and disappearance of the artefacts after the IAS. Noise/oversensing could not be provoked by manipulation, X-ray did not show evidence for lead/header issues and impedance measurements were within normal limits. The pooled experience of our centres implies that up to ∼5% of S-ICDs may be affected. The underlying root cause was discussed extensively with the manufacturer but remains unknown and is under further investigation.ConclusionSense-B-noise is a novel cause for IAS due to non-physiologic signal oversensing, arising from a previously unknown S-ICD system issue. Sense-B-noise may be suspected if episodes of signal saturation in primary or alternate vector configuration are present, oversensing cannot be provoked, and X-ray and electrical measurements appear normal. The issue can be resolved by reprogramming the device to secondary sensing vector.