Published in

American Institute of Physics, Applied Physics Letters, 17(118), 2021

DOI: 10.1063/5.0045571

Links

Tools

Export citation

Search in Google Scholar

Upscaling of multi-beam x-ray ptychography for efficient x-ray microscopy with high resolution and large field of view

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Nondestructive imaging with both a large field of view and a high spatial resolution is crucial to understand complex materials and processes in science and technology. X-ray ptychography can provide highest spatial resolution but is limited in the field of view by the acquisition time and coherent flux at modern x-ray sources. By multi-beam ptychography, the sample can be imaged in parallel by several spatially separated and mutually incoherent beams. We have implemented this method using 3D nanoprinted x-ray optics to create tailor-made x-ray multi-beam arrays. The use of 3D printing allows us to create focusing optics with a minimum of nonfunctional support structures. In this way, large sample areas can be efficiently scanned in parallel with up to six illuminating beams.