Published in

Wiley Open Access, Advanced Science, 2023

DOI: 10.1002/advs.202301873

Links

Tools

Export citation

Search in Google Scholar

3D and Multimodal X‐Ray Microscopy Reveals the Impact of Voids in CIGS Solar Cells

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractSmall voids in the absorber layer of thin‐film solar cells are generally suspected to impair photovoltaic performance. They have been studied on Cu(In,Ga)Se2 cells with conventional laboratory techniques, albeit limited to surface characterization and often affected by sample‐preparation artifacts. Here, synchrotron imaging is performed on a fully operational as‐deposited solar cell containing a few tens of voids. By measuring operando current and X‐ray excited optical luminescence, the local electrical and optical performance in the proximity of the voids are estimated, and via ptychographic tomography, the depth in the absorber of the voids is quantified. Besides, the complex network of material‐deficit structures between the absorber and the top electrode is highlighted. Despite certain local impairments, the massive presence of voids in the absorber suggests they only have a limited detrimental impact on performance.