Dissemin is shutting down on January 1st, 2025

Published in

American Institute of Physics, Applied Physics Letters, 12(121), 2022

DOI: 10.1063/5.0102076

Links

Tools

Export citation

Search in Google Scholar

Self-selective analogue FeOx-based memristor induced by the electron transport in the defect energy level

Journal article published in 2022 by Changrong Liao, Xiaofang Hu, Xiaoqin Liu, Bai Sun ORCID, Guangdong Zhou ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

A Fe2O3 film homojunction was orderly prepared by magnetron sputtering and a hydrothermal method. The Fe2O3 homojunction-based memristor exhibits an obvious self-selective effect as well as a typical analogue resistive switching (RS) memory behavior. A desirable self-rectifying voltage range (−1 to 1 V), stable resistance ratio, good cycling endurance (>104 cycles), and long retention time (>104 s) can be obtained from the Fe2O3 homojunction-based memristor. Oxygen vacancies (Vo) are inevitably generated during the growth of the Fe2O3 film. The self-selective analogue RS memory behavior is ascribed to the electron tunneling behavior between the potential barrier generated by the FeOx contact and the electron filling dynamic in the Vo-based traps. This work provides a simple method to prepare a self-selective analogue memristor and lays the foundation for the core device of neuromorphic computing.