Published in

Wiley Open Access, Advanced Science, 29(10), 2023

DOI: 10.1002/advs.202303837

Links

Tools

Export citation

Search in Google Scholar

Efficient N‐Type Organic Electrochemical Transistors and Field‐Effect Transistors Based on PNDI‐Copolymers Bearing Fluorinated Selenophene‐Vinylene‐Selenophenes

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstractn‐Type organic electrochemical transistors (OECTs) and organic field‐effect transistors (OFETs) are less developed than their p‐type counterparts. Herein, polynaphthalenediimide (PNDI)‐based copolymers bearing novel fluorinated selenophene‐vinylene‐selenophene (FSVS) units as efficient materials for both n‐type OECTs and n‐type OFETs are reported. The PNDI polymers with oligo(ethylene glycol) (EG7) side chains P(NDIEG7‐FSVS), affords a high µC* of > 0.2 F cm−1 V−1 s−1, outperforming the benchmark n‐type Pg4NDI‐T2 and Pg4NDI‐gT2 by two orders of magnitude. The deep‐lying LUMO of −4.63 eV endows P(NDIEG7‐FSVS) with an ultra‐low threshold voltage of 0.16 V. Moreover, the conjugated polymer with octyldodecyl (OD) side chains P(NDIOD‐FSVS) exhibits a surprisingly low energetic disorder with an Urbach energy of 36 meV and an ultra‐low activation energy of 39 meV, resulting in high electron mobility of up to 0.32 cm2 V−1 s−1 in n‐type OFETs. These results demonstrate the great potential for simultaneously achieving a lower LUMO and a tighter intermolecular packing for the next‐generation efficient n‐type organic electronics.