Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Antioxidants, 9(10), p. 1480, 2021

DOI: 10.3390/antiox10091480

Links

Tools

Export citation

Search in Google Scholar

Ozone Treatment Is Insufficient to Inactivate SARS-CoV-2 Surrogate under Field Conditions

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

COVID-19 caused by SARS-CoV-2 caused a worldwide crisis, highlighting the importance of preventive measures in infectious diseases control. SARS-CoV-2 can remain infectious on surfaces for up to several weeks; therefore, proper disinfection is required to mitigate the risk of indirect virus spreading. Gaseous ozone treatment has received particular attention as an easily accessible disinfection tool. In this study, we evaluated the virucidal effectiveness of gaseous ozone treatment (>7.3 ppm, 2 h) on murine hepatitis virus (MHV)-contaminated stainless-steel surface and PBS-suspended virus under field conditions at ambient (21.8%) and high (49.8–54.2%) relative humidity. Surficial virus was soiled with 0.3 g/L of BSA. Parallelly, a half-hour vaporization with 7.3% hydrogen peroxide was performed on contaminated carriers. The obtained results showed that gaseous ozone, whilst quite effective against suspended virus, was insufficient in sanitizing coronavirus contaminated surfaces, especially under low RH. Increased humidity created more favorable conditions for MHV inactivation, resulting in 2.1 log titre reduction. Vaporization with 7.3% hydrogen peroxide presented much better virucidal performance than ozonation in a similar experimental setup, indicating that its application may be more advantageous regarding gaseous disinfection of surfaces contaminated with other coronaviruses, including SARS-CoV-2.