Published in

Frontiers Media, Frontiers in Chemistry, (9), 2021

DOI: 10.3389/fchem.2021.767421

Links

Tools

Export citation

Search in Google Scholar

Cluster Assembled Silicon-Lithium Nanostructures: A Nanowire Confined Inside a Carbon Nanotube

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We computationally explore an alternative to stabilize one-dimensional (1D) silicon-lithium nanowires (NWs). The Li12Si9 Zintl phase exhibits the NW [Li6Si5]∞1, combined with Y-shaped Si4 structures. Interestingly, this NW could be assembled from the stacking of the Li6Si5 aromatic cluster. The [Li6Si5]∞1@CNT nanocomposite has been investigated with density functional theory (DFT), including molecular dynamics simulations and electronic structure calculations. We found that van der Waals interaction between Li’s and CNT’s walls is relevant for stabilizing this hybrid nanocomposite. This work suggests that nanostructured confinement (within CNTs) may be an alternative to stabilize this free NW, cleaning its properties regarding Li12Si9 solid phase, i.e., metallic character, concerning the perturbation provided by their environment in the Li12Si7 compound.