Published in

Public Library of Science, PLoS ONE, 6(18), p. e0287383, 2023

DOI: 10.1371/journal.pone.0287383

Links

Tools

Export citation

Search in Google Scholar

Predicted versus CT-derived total lung volume in a general population: The ImaLife study

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Predicted lung volumes based on the Global Lung Function Initiative (GLI) model are used in pulmonary disease detection and monitoring. It is unknown how well the predicted lung volume corresponds with computed tomography (CT) derived total lung volume (TLV). The aim of this study was to compare the GLI-2021 model predictions of total lung capacity (TLC) with CT-derived TLV. 151 female and 139 male healthy participants (age 45–65 years) were consecutively selected from a Dutch general population cohort, the Imaging in Lifelines (ImaLife) cohort. In ImaLife, all participants underwent low-dose, inspiratory chest CT. TLV was measured by an automated analysis, and compared to predicted TLC based on the GLI-2021 model. Bland-Altman analysis was performed for analysis of systematic bias and range between limits of agreement. To further mimic the GLI-cohort all analyses were repeated in a subset of never-smokers (51% of the cohort). Mean±SD of TLV was 4.7±0.9 L in women and 6.2±1.2 L in men. TLC overestimated TLV, with systematic bias of 1.0 L in women and 1.6 L in men. Range between limits of agreement was 3.2 L for women and 4.2 L for men, indicating high variability. Performing the analysis with never-smokers yielded similar results. In conclusion, in a healthy cohort, predicted TLC substantially overestimates CT-derived TLV, with low precision and accuracy. In a clinical context where an accurate or precise lung volume is required, measurement of lung volume should be considered.