Published in

MDPI, Plants, 1(12), p. 9, 2022

DOI: 10.3390/plants12010009

Links

Tools

Export citation

Search in Google Scholar

The Influence of Different Crop Mulches on Weed Infestation, Soil Properties and Productivity of Wheat under Conventional and Conservation Production Systems

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Pakistan and other South Asian countries rely on wheat for human nutrition. However, wheat yield is declining in the region due to several biotic and abiotic constraints. Weeds are among the major factors responsible for yield decrease and farmers manage them by intensive tillage practices. Several studies have investigated the impact of various tillage practices on weed management in wheat. However, weed suppression abilities of different mulch types are rarely tested. This three-year (2019–20, 2020–21 and 2021–22) study investigated the impact of different mulch types (prepared from different crops) on weed infestation, soil properties and productivity of wheat under conventional and conservation production systems at three locations (Multan, Hafizabad and Faisalabad) in Punjab, Pakistan. The mulches included in the study were cotton sticks mulch, mungbean straw mulch, sorghum straw mulch, rice straw mulch, sunflower straw mulch, plastic mulch, and no mulch (as control). The production systems opted for wheat cultivation were conventionally tilled wheat (CTW), zero-tilled wheat (ZTW) and zero-tilled wheat sown with happy seeder machine (HSW). The CTW resulted in the lowest soil bulk density and the highest soil porosity after wheat harvest, while ZTW behaved oppositely. Similarly, incorporation of crop mulches resulted in the highest soil porosity and the lowest soil bulk density, while no-mulch incorporation and plastic mulch recorded the highest bulk density and the lowest soil porosity. Regarding mulches by production systems’ interaction, CTW with sorghum straw- and plastic mulches recorded the lowest weed density and biomass, while ZTW with no-mulch recorded the highest weed density and biomass at all locations. The CTW with mungbean straw- and plastic mulches resulted in the highest yield due to significant improvement in yield-related traits. However, ZTW with sorghum straw mulch and no-mulch resulted in the lowest wheat yield. Although sorghum straw mulch suppressed weed infestation, it negatively affected wheat growth. Economic analysis revealed that CTW with mungbean straw mulch resulted in the highest gross and net incomes and benefit:cost ratio (BCR), while the ZTW with rice straw- and sorghum straw mulches produced the lowest gross and net incomes and BCR at all locations. Therefore, mungbean straw mulch is a viable option to improve wheat productivity and net economic returns under different agro-climatic conditions of Punjab, Pakistan.