Published in

Wiley, Advanced Materials Technologies, 5(6), 2021

DOI: 10.1002/admt.202001137

Links

Tools

Export citation

Search in Google Scholar

Improved Long‐Term Stability and Reduced Humidity Effect in Gas Sensing: SiO<sub>2</sub> Ultra‐Thin Layered ZnO Columnar Films

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractThe undoped and metal‐doped zinc oxide columnar films (ZnO:Sn, ZnO:Fe, ZnO:Ag, and ZnO:Cu) are covered with an ultra‐thin layer of SiO2 (10–20 nm). The electrical, UV, and volatile organic compounds (VOCs) sensing properties are evaluated under different ambient conditions for ≈7 months to investigate the impact of the top SiO2‐layer on the long‐term stability of samples. The obtained results show a high immunity of sensing properties of SiO2‐coated samples to humidity. Furthermore, gas sensing measurements show that the loss in response after 203 days is significantly lower for coated samples indicating higher stability of sensing performance. For ZnO:Fe the gas response is reduced by about 90% after 203 days, but for SiO2‐coated ZnO:Fe columnar films the gas response is slightly reduced by only 38%. The density functional theory (DFT) calculations show that water species bind strongly with the surface SiO2 layer atoms with a −0.129 e charge transfer, which is, much higher compared to the interaction with ethanol and acetone. Calculations show strong binding of water species on the SiO2 layer indicating preferential absorption of water molecules on SiO2. The obtained results demonstrate an important role of the top SiO2 ultra‐thin layer in order to produce humidity‐tolerant sensitive devices.