Published in

Nature Research, Nature Communications, 1(14), 2023

DOI: 10.1038/s41467-023-43094-5

Links

Tools

Export citation

Search in Google Scholar

Precursor region with full phonon softening above the charge-density-wave phase transition in 2H-TaSe2

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractResearch on charge-density-wave (CDW) ordered transition-metal dichalcogenides continues to unravel new states of quantum matter correlated to the intertwined lattice and electronic degrees of freedom. Here, we report an inelastic x-ray scattering investigation of the lattice dynamics of the canonical CDW compound 2H-TaSe2 complemented by angle-resolved photoemission spectroscopy and density functional perturbation theory. Our results rule out the formation of a central-peak without full phonon softening for the CDW transition in 2H-TaSe2 and provide evidence for a novel precursor region above the CDW transition temperature TCDW, which is characterized by an overdamped phonon mode and not detectable in our photoemission experiments. Thus, 2H-TaSe2 exhibits structural before electronic static order and emphasizes the important lattice contribution to CDW transitions. Our ab-initio calculations explain the interplay of electron-phonon coupling and Fermi surface topology triggering the CDW phase transition and predict that the CDW soft phonon mode promotes emergent superconductivity near the pressure-driven CDW quantum critical point.