Dissemin is shutting down on January 1st, 2025

Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 41(118), 2021

DOI: 10.1073/pnas.2110025118

Links

Tools

Export citation

Search in Google Scholar

Integrated spatial multiomics reveals fibroblast fate during tissue repair

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

SignificanceIn the skin, tissue injury results in fibrosis in the form of a scar composed of dense extracellular matrix deposited by fibroblasts. Therapies that promote tissue regeneration rather than fibrosis remain elusive because principles of fibroblast programming and response to injury remain incompletely understood. Here, we present a multimodal -omics platform for the study of cell populations in complex tissue, which has allowed us to characterize wound healing fibroblasts across both time and space. We identify functionally distinct fibroblast subpopulations and track cell fate during the response to wounding. We demonstrate that populations of fibroblasts migrate, proliferate, and differentiate in an adaptive response to disruption of their environment. These results illustrate fundamental principles underlying the cellular response to tissue injury.