Cambridge University Press, Parasitology, 9(150), p. 805-812, 2023
DOI: 10.1017/s0031182023000586
Full text: Unavailable
AbstractFor infections to be maintained in a population, pathogens must compete to colonize hosts and transmit between them. We use an experimental approach to investigate within-and-between host dynamics using the pathogen Pseudomonas aeruginosa and the animal host Caenorhabditis elegans. Within-host interactions can involve the production of goods that are beneficial to all pathogens in the local environment but susceptible to exploitation by non-producers. We exposed the nematode host to ‘producer’ and two ‘non-producer’ bacterial strains (specifically for siderophore production and quorum sensing), in single infections and coinfections, to investigate within-host colonization. Subsequently, we introduced infected nematodes to pathogen-naive populations to allow natural transmission between hosts. We find that producer pathogens are consistently better at colonizing hosts and transmitting between them than non-producers during coinfection and single infection. Non-producers were poor at colonizing hosts and between-host transmission, even when coinfecting with producers. Understanding pathogen dynamics across these multiple levels will ultimately help us predict and control the spread of infections, as well as contribute to explanations for the persistence of cooperative genotypes in natural populations.