Published in

American Association for the Advancement of Science, Science Advances, 24(9), 2023

DOI: 10.1126/sciadv.adg0167

Links

Tools

Export citation

Search in Google Scholar

Stabilizing Co <sub>2</sub> C with H <sub>2</sub> O and K promoter for CO <sub>2</sub> hydrogenation to C <sub>2+</sub> hydrocarbons

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The decomposition of cobalt carbide (Co 2 C) to metallic cobalt in CO 2 hydrogenation results in a notable drop in the selectivity of valued C 2+ products, and the stabilization of Co 2 C remains a grand challenge. Here, we report an in situ synthesized K-Co 2 C catalyst, and the selectivity of C 2+ hydrocarbons in CO 2 hydrogenation achieves 67.3% at 300°C, 3.0 MPa. Experimental and theoretical results elucidate that CoO transforms to Co 2 C in the reaction, while the stabilization of Co 2 C is dependent on the reaction atmosphere and the K promoter. During the carburization, the K promoter and H 2 O jointly assist in the formation of surface C * species via the carboxylate intermediate, while the adsorption of C * on CoO is enhanced by the K promoter. The lifetime of the K-Co 2 C is further prolonged from 35 hours to over 200 hours by co-feeding H 2 O. This work provides a fundamental understanding toward the role of H 2 O in Co 2 C chemistry, as well as the potential of extending its application in other reactions.