Dissemin is shutting down on January 1st, 2025

Published in

International Union of Crystallography, Journal of Synchrotron Radiation, 3(30), p. 571-581, 2023

DOI: 10.1107/s1600577523001613

Links

Tools

Export citation

Search in Google Scholar

Catalytic reactor for operando spatially resolved structure–activity profiling using high-energy X-ray diffraction

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In heterogeneous catalysis, operando measurements probe catalysts in their active state and are essential for revealing complex catalyst structure–activity relationships. The development of appropriate operando sample environments for spatially resolved studies has come strongly into focus in recent years, particularly when coupled to the powerful and multimodal characterization tools available at synchrotron light sources. However, most catalysis studies at synchrotron facilities only measure structural information about the catalyst in a spatially resolved manner, whereas gas analysis is restricted to the reactor outlet. Here, a fully automated and integrated catalytic profile reactor setup is shown for the combined measurement of temperature, gas composition and high-energy X-ray diffraction (XRD) profiles, using the oxidative dehydrogenation of C2H6 to C2H4 over MoO3/γ-Al2O3 as a test system. The profile reactor methodology was previously developed for X-ray absorption spectroscopy and is here extended for operando XRD. The profile reactor is a versatile and accessible research tool for combined spatially resolved structure–activity profiling, enabling the use of multiple synchrotron-based characterization methods to promote a knowledge-based optimization of a wide range of catalytic systems in a time- and resource-efficient way.