Dissemin is shutting down on January 1st, 2025

Published in

Wiley Open Access, SusMat, 4(1), p. 569-592, 2021

DOI: 10.1002/sus2.38

Links

Tools

Export citation

Search in Google Scholar

Recent advances in high‐loading catalysts for low‐temperature fuel cells: From nanoparticle to single atom

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractLow‐temperature fuel cells (LTFCs) are considered to be one of the most promising power sources for widespread application in sustainable and renewable energy conversion technologies. Although remarkable advances have been made in the mass activity of catalysts, mass transport impedance needs to be urgently addressed at a well‐designed membrane electrode assembly (MEA) scale. Increasing the loading of electrocatalysts is conducive to prepare thinner and more efficient MEAs owing to the resulting enhanced reactant permeability, better proton diffusion, and lower electrical resistance. Herein, recent progress in high‐loading (≥40 wt.%) Pt nanoparticle catalysts (NPCs) and high‐loading (≥2 wt.%) single‐atom catalysts (SACs) for LTFC applications are reviewed. A summary of various synthetic approaches and support materials for high‐loading Pt NPCs and SACs is systematically presented. The influences of high surface area and appropriate surface functionalization for Pt NPCs, as well as coordination environment, spatial confinement effect, and strong metal‐support interactions (SMSI) for SACs are highlighted. Additionally, this review presents some ideas regarding challenges and future opportunities of high‐loading catalysts in the application of LTFCs.