Published in

Wiley, Advanced Materials, 14(35), 2023

DOI: 10.1002/adma.202210757

Links

Tools

Export citation

Search in Google Scholar

Tailoring the d‐Orbital Splitting Manner of Single Atomic Sites for Enhanced Oxygen Reduction

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractRegulating the electronic states of single atomic sites around the Fermi level remains a major concern for boosting the electrocatalytic oxygen reduction reaction (ORR). Herein, a Fe d‐orbital splitting manner modulation strategy by constructing axial coordination on FeN4 sites is presented. Experimental investigations and theoretical calculations reveal that the axial tractions induce the distortion of square‐planar field (FeN4 SP), up to the quasi‐octahedral coordination (FeN4O1 OCquasi), thus leading to the electron rearrangement with a diluted spin polarization. The declined population of unpaired electrons in dz2, dxz and dyz states engenders a moderate adsorption of ORR intermediates, thereby reinforcing the intrinsic reaction activity. In situ infrared spectroscopy further demonstrates that the reordering of d‐orbital splitting and occupation facilitates the desorption of *OH. The FeN4O1 OCquasi exhibits a dramatic improvement of kinetic current density and turnover frequency, which are fivefold and tenfold higher than those of FeN4 SP. This work presents a novel understanding on improving the electrocatalytic performance through the orbital‐scale manipulation.