Published in

MDPI, Sustainability, 19(14), p. 12840, 2022

DOI: 10.3390/su141912840

Links

Tools

Export citation

Search in Google Scholar

Reduction in the Allelopathic Potential of Conocarpus erectus L. through Vermicomposting

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The utilization of vermi-technology to reduce allelopathic effects is a cost-effective, efficient, and environmentally appropriate alternative to traditional chemical and mechanical methods. The current investigation was an effort to obtain vermicompost from C. erectus and its binary combination with soil and farmyard manure (FYM) using E. foetida. The pH, EC, organic carbon, macro and micro-nutrients, CO2 emission, the average growth rate of the worms, number of worms, number of cocoons, and weight gained by earthworms were analyzed by standard methods. The present study also investigated the effect of produced vermicompost on the growth and yield of mung beans (Vigna radiata L). The maximum reduction in soil pH was observed (6.47) in vermicompost of C. erectus leaves, among other treatments. The highest N (1.86%), P (0.15%), and K (0.41%) contents were found in the vermicompost of C. erectus leaves + FYM. Similarly, the maximum plant height (36.00 cm) was achieved in vermicompost of C. erectus leaves + FYM compared to other treatments. The highest SPAD value was observed (56.37) when the soil was treated with vermicompost (C. erectus leaves + FYM) @ 5 t ha−1, followed by the treatment where vermicompost (C. erectus leaves + soil) @ 8 t ha−1 was applied. The soil amendment of vermicompost (C. erectus leaves + FYM) @ 5 t ha−1 showed competitive results (in terms of the growth and yield parameters of mung beans) compared to other types of vermicompost and C. erectus biomass. This study has the potential to reduce the phytotoxicity of C. erectus biomass and transform it into a potent organic fertilizer through vermicomposting.