Dissemin is shutting down on January 1st, 2025

Published in

Springer, Naunyn-Schmiedeberg's Archives of Pharmacology, 2023

DOI: 10.1007/s00210-023-02874-y

Links

Tools

Export citation

Search in Google Scholar

Cytoprotective potency of naringin against di-n-butylphthalate (DBP)-induced oxidative testicular damage in male rats

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractThe present study aimed to investigate the protective potential of naringin (NG) against di-n-butyl phthalate (DBP)- induced testicular damage and impairment of spermatogenesis in rats. Forty-two male Wistar albino rats were divided into six equal groups, and treated orally, 3 times weekly for 8 successive weeks. Control vehicle group was administrated olive oil, naringin-treated group was administered NG (80 mg/kg), DBP 250- and DBP 500- intoxicated groups received DBP (250 mg/kg) and (500 mg/kg), respectively, NG + DBP 250 and NG + DBP 500 groups received NG, an hour prior to DBP 250 and 500 administration. The results revealed that DBP induced dose-dependent male reproductive dysfunctions, included a significant decrease in the serum testosterone level concomitantly with significant decreases in the sperm count, viability, and total motility. Meanwhile, DBP significantly increased the testicular malondialdehyde level with significant reductions of glutathione content and catalase activity. Histopathologically, DBP provoked absence of spermatozoa, degenerative changes in the cell layers of seminiferous tubules and a significant decrease in the thickness of the seminiferous tubules epithelium. Conversely, the concomitant treatment with NG, one hour before DBP 250 or 500- intoxication mitigated the dose-dependent reproductive dysfunctions induced by DBP, evidenced by significant increases of serum testosterone level, sperm motility, count and viability along with marked improvement of the oxidant/antioxidant status and testicular histoarchitecture. In conclusion, the findings recorded herein proved that NG could mitigate DBP-induced testicular damage and impairment of spermatogenesis, suggesting the perspective of using NG as a natural protective and therapeutic agent for alleviating the reproductive dysfunctions and improving reproductive performance, mainly via its potent antioxidant activity.