Published in

Wiley, Chemistry - A European Journal, 40(27), p. 10456-10460, 2021

DOI: 10.1002/chem.202101238

Links

Tools

Export citation

Search in Google Scholar

Molecular Recognition of Disaccharides in Water: Preorganized Macrocyclic or Adaptive Acyclic?

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractWhen facing the dilemma of following a preorganized or adaptive design approach in conceiving the architecture of new biomimetic receptors for carbohydrates, shape‐persistent macrocyclic structures were most often chosen to achieve effective recognition of neutral saccharides in water. In contrast, acyclic architectures have seldom been explored, even though potentially simpler and more easily accessible. In this work, comparison of the binding properties of two structurally related diaminocarbazolic receptors, featuring a macrocyclic and an acyclic tweezer‐shaped architecture, highlighted the advantages provided by the acyclic receptor in terms of selectivity in the recognition of 1,4‐disaccharides of biological interest. Selective recognition of GlcNAc2, the core fragment of N‐glycans exposed on the surface of enveloped viruses, stands as an emblematic example. NMR spectroscopic data and molecular modeling calculations were used to ascertain the differences in binding mode and to shed light on the origin of recognition efficacy and selectivity.