Published in

Wiley, Advanced Optical Materials, 18(10), 2022

DOI: 10.1002/adom.202200607

Links

Tools

Export citation

Search in Google Scholar

Defect Engineering for Efficient Cu<sub>2</sub>ZnSnS<sub>4</sub> Solar Cells via Moisture‐Assisted Post‐Deposition Annealing

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractSulfide kesterite Cu2ZnSnS4 (CZTS) solar cells, containing earth‐abundant and environmentally benign constituents, are regarded as promising candidates for thin‐film photovoltaic technologies. CZTS device performance, however, is currently limited by severe nonradiative recombination caused by abundant deep‐level defects. Herein, an effective defect engineering approach for high bandgap CZTS solar cells using a newly introduced moisture‐assisted post‐deposition annealing treatment is reported. This treatment modifies the local chemical composition within the heterojunction and CZTS grain boundaries and enhances the incorporation of Cd within the CZTS layer during CdS deposition. Cd not only accumulates at the grain boundaries, but it also presents in grain interiors where it occupies Cu lattice sites. The overall modification of the local chemical environment suppresses deep level defects and activates relatively shallow acceptor CuZn antisites and Cu vacancies, giving rise to remarkably improved device performance. This work opens a new direction for defect engineering of kesterite materials, which may also be applicable to other thin film semiconductors.