Published in

Wiley, Advanced Materials Interfaces, 10(8), 2021

DOI: 10.1002/admi.202100018

Links

Tools

Export citation

Search in Google Scholar

Metal Nitride Electrode Stress and Chemistry Effects on Phase and Polarization Response in Ferroelectric Hf<sub>0.5</sub>Zr<sub>0.5</sub>O<sub>2</sub> Thin Films

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractFerroelectric phase stability in hafnium oxide is reported to be influenced by factors that include composition, biaxial stress, crystallite size, and oxygen vacancies. In the present work, the ferroelectric performance of atomic layer deposited Hf0.5Zr0.5O2 (HZO) prepared between TaN electrodes that are processed under conditions to induce variable biaxial stresses is evaluated. The post‐processing stress states of the HZO films reveal no dependence on the as‐deposited stress of the adjacent TaN electrodes. All HZO films maintain tensile biaxial stress following processing, the magnitude of which is not observed to strongly influence the polarization response. Subsequent composition measurements of stress‐varied TaN electrodes reveal changes in stoichiometry related to the different preparation conditions. HZO films in contact with Ta‐rich TaN electrodes exhibit higher remanent polarizations and increased ferroelectric phase fractions compared to those in contact with N‐rich TaN electrodes. HZO films in contact with Ta‐rich TaN electrodes also have higher oxygen vacancy concentrations, indicating that a chemical interaction between the TaN and HZO layers ultimately impacts the ferroelectric orthorhombic phase stability and polarization performance. The results of this work demonstrate a necessity to carefully consider the role of electrode processing and chemistry on performance of ferroelectric hafnia films.