Published in

Wiley, Advanced Materials, 1(35), 2022

DOI: 10.1002/adma.202207587

Links

Tools

Export citation

Search in Google Scholar

Impact‐Resistant Hydrogels by Harnessing 2D Hierarchical Structures

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractWith the strengthening capacity through harnessing multi‐length‐scale structural hierarchy, synthetic hydrogels hold tremendous promise as a low‐cost and abundant material for applications demanding unprecedented mechanical robustness. However, integrating high impact resistance and high water content, yet superior softness, in a single hydrogel material still remains a grand challenge. Here, a simple, yet effective, strategy involving bidirectional freeze‐casting and compression‐annealing is reported, leading to a hierarchically structured hydrogel material. Rational engineering of the distinct 2D lamellar structures, well‐defined nanocrystalline domains and robust interfacial interaction among the lamellae, synergistically contributes to a record‐high ballistic energy absorption capability (i.e., 2.1 kJ m−1), without sacrificing their high water content (i.e., 85 wt%) and superior softness. Together with its low‐cost and extraordinary energy dissipation capacity, the hydrogel materials present a durable alternative to conventional hydrogel materials for armor‐like protection circumstances.