Published in

Nature Research, Nature Communications, 1(14), 2023

DOI: 10.1038/s41467-023-43796-w

Links

Tools

Export citation

Search in Google Scholar

Gate-tunable anomalous Hall effect in Bernal tetralayer graphene

Journal article published in 2023 by Hao Chen, Arpit Arora, Justin C. W. Song ORCID, Kian Ping Loh ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractLarge spin-orbit coupling is often thought to be critical in realizing magnetic order-locked charge transport such as the anomalous Hall effect (AHE). Recently, artificial stacks of two-dimensional materials, e.g., magic-angle twisted bilayer graphene on hexagonal boron-nitride heterostructures and dual-gated rhombohedral trilayer graphene, have become platforms for realizing AHE without spin-orbit coupling. However, these stacking arrangements are not energetically favorable, impeding experiments and further device engineering. Here we report an anomalous Hall effect in Bernal-stacked tetralayer graphene devices (BTG), the most stable configuration of four-layer graphene. BTG AHE is switched on by a displacement field and is most pronounced at low carrier densities. The onset of AHE occurs in tandem with a full metal to a broken isospin transition indicating an orbital origin of the itinerant ferromagnetism. At lowest densities, BTG exhibits an unconventional hysteresis with step-like anomalous Hall plateaus. Persisting to several tens of kelvin, AHE in BTG demonstrates the ubiquity and robustness of magnetic order in readily available and stable multilayer Bernal graphene stacks—a new venue for intrinsic non-reciprocal responses.