Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Advanced Materials Interfaces, 6(9), 2022

DOI: 10.1002/admi.202102079

Links

Tools

Export citation

Search in Google Scholar

Restriction‐In‐Motion of Surface Ligands Enhances Photoluminescence of Quantum Dots—Experiment and Theory

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractThe relationship between emission and ligand restriction of a series of ZnSe/ZnS quantum dots (QDs) encapsulated in nanoparticles is investigated systematically via experiments and quantum theory. The QDs have a ZnSe core and a ZnS shell, capped with hydrophobic ligands (triotylphosphine oxide/hexadecylamine), allowing them to be entrapped in a model biomembrane, bicelle, made of zwitterionic dipalmitoyl and dihexanoyl phosphatidylcholines and charged dipalmitoyl phosphatidylglycerol. Enhanced photoluminescence is observed upon encapsulation, depending on the QD‐to‐lipid ratio. Transmission electron microscopy and small‐angle X‐ray scattering confirm that QDs are preferably situated at the rim of bicellar discs. A simplified quantum dissipation heat‐bath theory is proposed to correlate the enhancement with slower nonradiative processes caused by the restriction‐in‐motion (RIM) of the surface ligands. However, Förster resonance energy transfer due to QD aggregation counteracts the effect.