Published in

CSIRO Publishing, Wildlife Research, 3(48), p. 193, 2021

DOI: 10.1071/wr20055

Links

Tools

Export citation

Search in Google Scholar

A spatial genetic framework for koala translocations: where to?

Journal article published in 2021 by Janette A. Norman ORCID, Les Christidis ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Wildlife translocations are gaining acceptance as a valuable conservation tool for threatened Australian fauna. The 2019–2020 bushfire crisis has significantly affected koala habitat across four states, and translocations, when properly implemented, could facilitate the demographic and genetic recovery of affected populations. Current translocation policies lack an appropriate spatial framework to guide conservation actions and this could lead to unexpected or undesirable outcomes with the potential to hinder population recovery. To address these concerns, we propose development of a spatial framework based on knowledge of population genetic structure and population-specific dispersal patterns estimated from molecular data. At an operational level, application of a spatial genetic framework obviates the need to specify restrictive translocation limits, reduces reliance on subjective interpretations of population structure, and provides the potential to improve translocation success and conservation outcomes. We strongly encourage implementation of a spatial genetic framework and its integration into the decision-making process for selection and prioritisation of release sites for translocated koalas by wildlife carers, researchers and wildlife managers. The proposed framework would also support koala conservation and management more broadly.