Dissemin is shutting down on January 1st, 2025

Published in

Optica, Optics Express, 7(31), p. 11598, 2023

DOI: 10.1364/oe.484026

Links

Tools

Export citation

Search in Google Scholar

Propagation characteristics of single and multilayer Ga:ZnO in the epsilon near zero region

Journal article published in 2023 by Ranjeet Dwivedi ORCID, Johann Toudert
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We numerically investigated the propagation characteristics of Ga:ZnO (GZO) thin films embedded in a ZnWO4 background in the epsilon near zero (ENZ) region. We found that, for GZO layer thickness ranging between 2 - 100 nm (∼ 1/600 - 1/12 of ENZ wavelength), such structure supports a novel non-radiating mode with its real part of effective index lower than surrounding refractive index or even less than 1. Such a mode has its dispersion curve lying to the left of the light line in the background region. However, the calculated electromagnetic fields display non-radiating nature contrary to the Berreman mode, because the transverse component of the wave vector is complex, ensuring a decaying field. Furthermore, while the considered structure supports confined and highly lossy TM modes in the ENZ region, no TE mode is supported. Subsequently, we studied the propagation characteristics of a multilayer structure constituting an array of GZO layers in the ZnWO4 matrix considering the modal field’s excitation using the end-fire coupling. Such a multilayer structure is analyzed using high-precision rigorous coupled-wave analysis and shows strong polarization selective and resonant absorption/emission, the spectral location and bandwidth of which can be tuned by judiciously selecting the thickness of the GZO layer and other geometrical parameters.