Published in

Wiley, AIChE Journal, 2(69), 2022

DOI: 10.1002/aic.17911

Links

Tools

Export citation

Search in Google Scholar

Magneto‐hydrodynamic mixing: A new technique for preparing carbomer hydrogels

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractMagnetohydrodynamic mixing was evaluated as an alternative to conventional high shear mixing (HSM) in the preparation of carbomer hydrogels containing 1.22 wt% Carbopol® 980 NF. Neutralization of the carbomer dispersion (pH = 2.74) with triethanolamine (TEA) enabled to adjust the pH of the mixture and tune the viscosity of the hydrogel. Using HSM, this approach was limited to 0.2 wt% TEA (pH = 3.83) as the gel became too viscous and the recirculation flow dropped from 12 to 0.3 m3/h. Magnetohydrodynamic mixing enabled to reach TEA concentrations up to 1.0 wt% (pH = 5.31). Apparent viscosity measurements on samples having 0.2 wt% TEA revealed lower viscosities for carbomer hydrogels prepared with HSM, that is, 6800 mPa s versus 8800 mPa for magneto‐hydrodynamic mixing. Based on 1H NMR evidence, this decrease in apparent viscosity was attributed to structural damage to the carbomer backbone in combination with mechanochemical degradation of the added TEA.