Published in

MDPI, Diversity, 6(15), p. 776, 2023

DOI: 10.3390/d15060776

Links

Tools

Export citation

Search in Google Scholar

Looking at the Expansion of Three Demersal Lessepsian Fish Immigrants in the Greek Seas: What Can We Get from Spatial Distribution Modeling?

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

A big number of Red Sea species have entered the Mediterranean Sea since the opening of the Suez Canal. Some of them quickly establish local populations and increase their abundance, forming a potential threat for local biodiversity and fisheries. Here, we use habitat modeling tools to study the expansion of three alien, demersal fish species that entered the Mediterranean basin at different times: Pterois miles, Siganus luridus and Siganus rivulatus. Georeferenced occurrence data from the eastern Mediterranean over the past ten years were compiled using online sources, published scientific literature and questionnaires and were correlated with environmental and topographic variables. The maximum entropy modeling approach was applied to construct habitat suitability maps for the target species over all of the Greek Seas. Results emphasized the three species’ strong coastal nature and their association with the presence of Posidonia oceanica meadows. Probability maps evidenced that for all species there is a higher likelihood of presence along the southeast and central Aegean and Ionian Sea coasts and a lower likelihood throughout the North Aegean Sea. For Siganus spp., predictions in the Thracian Sea were highlighted as highly uncertain, as the environmental conditions in this area partly fall outside the range of values occurring in locations of their current presence.