Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Genes, 12(14), p. 2153, 2023

DOI: 10.3390/genes14122153

Links

Tools

Export citation

Search in Google Scholar

Indirect DNA Transfer and Forensic Implications: A Literature Review

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Progress in DNA profiling techniques has made it possible to detect even the minimum amount of DNA at a crime scene (i.e., a complete DNA profile can be produced using as little as 100 pg of DNA, equivalent to only 15–20 human cells), leading to new defense strategies. While the evidence of a DNA trace is seldom challenged in court by a defendant’s legal team, concerns are often raised about how the DNA was transferred to the location of the crime. This review aims to provide an up-to-date overview of the experimental work carried out focusing on indirect DNA transfer, analyzing each selected paper, the experimental method, the sampling technique, the extraction protocol, and the main results. Scopus and Web of Science databases were used as the search engines, including 49 papers. Based on the results of this review, one of the factors that influence secondary transfer is the amount of DNA shed by different individuals. Another factor is the type and duration of contact between individuals or objects (generally, more intimate or prolonged contact results in more DNA transfer). A third factor is the nature and quality of the DNA source. However, there are exceptions and variations depending on individual characteristics and environmental conditions. Considering that secondary transfer depends on multiple factors that interact with each other in unpredictable ways, it should be considered a complex and dynamic phenomenon that can affect forensic investigation in various ways, for example, placing a subject at a crime scene who has never been there. Correct methods and protocols are required to detect and prevent secondary transfer from compromising forensic evidence, as well as the correct interpretation through Bayesian networks. In this context, the definition of well-designed experimental studies combined with the use of new forensic techniques could improve our knowledge in this challenging field, reinforcing the value of DNA evidence in criminal trials.