Published in

MDPI, Biosensors, 8(13), p. 767, 2023

DOI: 10.3390/bios13080767

Links

Tools

Export citation

Search in Google Scholar

REGA-SIGN: Development of a Novel Set of NanoBRET-Based G Protein Biosensors

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Despite G protein-coupled receptors (GPCRs) being important theapeutic targets, the signaling properties of many GPCRs remain poorly characterized. GPCR activation primarily initiates heterotrimeric G protein signaling. To detect ligand-induced G protein activation, Bioluminescence Resonance Energy Transfer (BRET)-based biosensors were previously developed. Here, we designed a novel set of Nanoluciferase (NLuc) BRET-based biosensors (REGA-SIGN) that covers all Gα protein families (i.e., Gαi/o, GαSs/L, Gα12/13 and Gαq/15). REGA-SIGN uses NLuc as a bioluminescent donor and LSS-mKATE2, a red-shifted fluorophore, as an acceptor. Due to the enhanced spectral separation between donor and acceptor emission and the availability of a stable substrate for NLuc, this donor–acceptor pair enables sensitive kinetic assessment of G protein activity. After optimization, the NLuc integration sites into the Gα subunit largely corresponded with previously reported integration sites, except for GαSs/L for which we describe an alternative NLuc insertion site. G protein rescue experiments validated the biological activity of these Gα donor proteins. Direct comparison between EGFP and LSS-mKATE2 as acceptor fluorophores revealed improved sensitivity for nearly all G protein subtypes when using the latter one. Hence, REGA-SIGN can be used as a panel of kinetic G protein biosensors with high sensitivity.