Published in

BioMed Central, Arthritis Research and Therapy, 1(25), 2023

DOI: 10.1186/s13075-023-03209-1

Links

Tools

Export citation

Search in Google Scholar

Impact of IL6R genetic variants on treatment efficacy and toxicity response to sarilumab in rheumatoid arthritis

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Background Sarilumab, an IL-6 receptor antagonist, is a first-line biologic disease-modifying anti-rheumatic drug for rheumatoid arthritis. The identification of genetic biomarkers as predictors of response to sarilumab could allow for a personalized treatment strategy to improve clinical outcomes. Methods We conducted a retrospective cohort study of 62 patients treated with sarilumab to determine whether single-nucleotide polymorphisms (SNP) in the IL6R gene could predict efficacy and toxicity responses. Six SNPs previously described in the IL6R gene (rs12083537, rs11265618, rs4329505, rs2228145, rs4537545, and rs4845625) were genotyped in DNA samples obtained from these patients. Using parametric tests, we evaluated the association between these polymorphisms and clinicopathological features. Treatment response was assessed six months after treatment initiation. Satisfactory response was based on EULAR criteria. Low disease activity was determined according to DAS28 and CDAI and quantitative improvements in DAS28 and CDAI scores. Results Three SNPs (rs4845625, rs4329505 and rs11265618) were significantly associated with response outcomes. All of the SNPs, except for rs12083537, had at least one significant association with dyslipidemia or hepatotoxicity. Conclusions These findings support the potential clinical value of SNPs, particularly rs4845625, as potentially useful biomarkers to predict response to sarilumab in patients with RA.