Published in

Wiley, ChemMedChem, 13(17), 2022

DOI: 10.1002/cmdc.202100764

Links

Tools

Export citation

Search in Google Scholar

Investigating the Role of Sulfate Groups for the Binding of Gd<sup>3+</sup> Ions to Glycosaminoglycans with NMR Relaxometry

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractGlycosaminoglycans (GAGs) are highly negatively charged macromolecules with a large cation binding capacity, but their interaction potential with exogeneous Gd3+ ions is under‐investigated. These might be released from chelates used as Gadolinium‐based contrast agents (GBCAs) for clinical MR imaging due to transmetallation with endogenous cations like Zn2+. Recent studies have quantified how an endogenous GAG sequesters released Gd3+ ions and impacts the thermodynamic and kinetic stability of some GBCAs. In this study, we investigate and compare the chelation ability of two important GAGs (heparin and chondroitin sulfate), as well as the homopolysaccharides dextran and dextran sulfate that are used as models for alternative macromolecular chelators. Our combined approach of MRI‐based relaxometry and isothermal titration calorimetry shows that the chelation process of Gd3+ into GAGs is not just a long‐range electrostatic interaction as proposed for the Manning model, but presumably a site‐specific binding. Furthermore, our results highlight the crucial role of sulfate groups in this process and indicate that the potential of a specific GAG to engage in this mechanism increases with its degree of sulfation. The transchelation of Gd3+ ions from GBCAs to sulfated GAGs should thus be considered as one possible explanation for the observed long‐term deposition of Gd3+ in vivo and related observations of long‐term signal enhancements on T1‐weighted MR images.