Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, npj Precision Oncology, 1(5), 2021

DOI: 10.1038/s41698-021-00220-0

Links

Tools

Export citation

Search in Google Scholar

Targeting extracellular and juxtamembrane FGFR2 mutations in chemotherapy-refractory cholangiocarcinoma

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractIntrahepatic cholangiocarcinoma (iCCA) has emerged as a promising candidate for precision medicine, especially in the case of activating FGFR2 gene fusions. In addition to fusions, a considerable fraction of iCCA patients reveals FGFR2 mutations, which might lead to uncontrolled activation of the FGFR2 pathway but are mostly of unknown functional significance. A current challenge for molecular tumor boards (MTB) is to predict the functional consequences of such FGFR2 alterations to guide potential treatment decisions. We report two iCCA patients with extracellular and juxtamembrane FGFR2 mutations. After in silico investigation of the alterations and identification of activated FGFR2 downstream targets in tumor specimens by immunohistochemistry and transcriptome analysis, the MTB recommended treatment with an FGFR-inhibiting tyrosine kinase inhibitor. Both patients developed a rapidly detectable and prolonged partial response to treatment. These two cases suggest an approach to characterize further detected FGFR2 mutations in iCCA to enable patients´ selection for a successful application of the FGFR -inhibiting drugs.