Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Sensors, 12(22), p. 4377, 2022

DOI: 10.3390/s22124377

Links

Tools

Export citation

Search in Google Scholar

An Internet of Things Sensor Array for Spatially and Temporally Resolved Indoor Climate Measurements

Journal article published in 2022 by Alexander Rusch ORCID, Thomas Rösgen
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The COVID-19 pandemic has emphasized the need for infection risk analysis and assessment of ventilation systems in indoor environments based on air quality criteria. In this context, simulations and direct measurements of CO2 concentrations as a proxy for exhaled air can help to shed light on potential aerosol pathways. While the former typically lack accurate boundary conditions as well as spatially and temporally resolved validation data, currently existing measurement systems often probe rooms in non-ideal, single locations. Addressing both of these issues, a large and flexible wireless array of 50 embedded sensor units is presented that provides indoor climate metrics with configurable spatial and temporal resolutions at a sensor response time of 20 s. Augmented by an anchorless self-localization capability, three-dimensional air quality maps are reconstructed up to a mean 3D Euclidean error of 0.21 m. Driven by resolution, ease of use, and fault tolerance requirements, the system has proven itself in day-to-day use at ETH Zurich, where topologically differing auditoria (at-grade, sloped) were investigated under real occupancy conditions. The corresponding results indicate significant spatial and temporal variations in the indoor climate rendering large sensor arrays essential for accurate room assessments. Even in well-ventilated auditoria, cleanout time constants exceeded 30 min.