Published in

Oxford University Press, Bioinformatics Advances, 1(2), 2022

DOI: 10.1093/bioadv/vbac002

Links

Tools

Export citation

Search in Google Scholar

How sticky are our proteins? Quantifying hydrophobicity of the human proteome

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Summary Proteins tend to bury hydrophobic residues inside their core during the folding process to provide stability to the protein structure and to prevent aggregation. Nevertheless, proteins do expose some ‘sticky’ hydrophobic residues to the solvent. These residues can play an important functional role, e.g. in protein–protein and membrane interactions. Here, we first investigate how hydrophobic protein surfaces are by providing three measures for surface hydrophobicity: the total hydrophobic surface area, the relative hydrophobic surface area and—using our MolPatch method—the largest hydrophobic patch. Secondly, we analyze how difficult it is to predict these measures from sequence: by adapting solvent accessibility predictions from NetSurfP2.0, we obtain well-performing prediction methods for the THSA and RHSA, while predicting LHP is more challenging. Finally, we analyze implications of exposed hydrophobic surfaces: we show that hydrophobic proteins typically have low expression, suggesting cells avoid an overabundance of sticky proteins. Availability and implementation The data underlying this article are available in GitHub at https://github.com/ibivu/hydrophobic_patches. Supplementary information Supplementary data are available at Bioinformatics Advances online.