Published in

American Association for the Advancement of Science, Science, 6575(374), p. 1626-1632, 2021

DOI: 10.1126/science.abl6184

Links

Tools

Export citation

Search in Google Scholar

Rapid assessment of SARS-CoV-2–evolved variants using virus-like particles

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A tool to probe SARS-CoV-2 biology To develop therapies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and emerging variants, it is important to understand the viral biology and the effect of mutations. However, this is challenging because live virus can only be studied in a few laboratories that meet stringent safety standards. Syed et al . describe a virus-like particle (VLP) that comprises the four SARS-CoV-2 structural proteins, but instead of packaging viral RNA, it packages messenger RNA (mRNA) that expresses a reporter protein (see the Perspective by Johnson and Menachery). The amount of reporter expressed in receiver cells depends on the efficiency of packaging and assembly in the producer cells and the efficiency of entry into receiver cells. Mutations in the nucleocapsid protein that are found in more transmissible variants increase mRNA packaging and expression. The VLPs provide a platform for studying the effect of mutations in the structural proteins and for screening therapeutics. —VV