Published in

The Royal Society, Philosophical Transactions of the Royal Society B: Biological Sciences, 1848(377), 2022

DOI: 10.1098/rstb.2021.0027

Links

Tools

Export citation

Search in Google Scholar

Understanding the biology of species' ranges: when and how does evolution change the rules of ecological engagement?

Journal article published in 2022 by Jon Bridle ORCID, Ary Hoffmann ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Understanding processes that limit species' ranges has been a core issue in ecology and evolutionary biology for many decades, and has become increasingly important given the need to predict the responses of biological communities to rapid environmental change. However, we still have a poor understanding of evolution at range limits and its capacity to change the ecological ‘rules of engagement’ that define these communities, as well as the time frame over which this occurs. Here we link papers in the current volume to some key concepts involved in the interactions between evolutionary and ecological processes at species' margins. In particular, we separate hypotheses about species’ margins that focus on hard evolutionary limits, which determine how genotypes interact with their environment, from those concerned with soft evolutionary limits, which determine where and when local adaptation can persist in space and time. We show how theoretical models and empirical studies highlight conditions under which gene flow can expand local limits as well as contain them. In doing so, we emphasize the complex interplay between selection, demography and population structure throughout a species' geographical and ecological range that determines its persistence in biological communities. However, despite some impressively detailed studies on range limits, particularly in invertebrates and plants, few generalizations have emerged that can predict evolutionary responses at ecological margins. We outline some directions for future work such as considering the impact of structural genetic variants and metapopulation structure on limits, and the interaction between range limits and the evolution of mating systems and non-random dispersal.This article is part of the theme issue ‘Species’ ranges in the face of changing environments (Part II)’.