Published in

Wiley, Monthly Notice- Royal Astronomical Society -Letters-, 1(524), p. L10-L14, 2023

DOI: 10.1093/mnrasl/slad064

Links

Tools

Export citation

Search in Google Scholar

Hot Earth or Young Venus? A nearby transiting rocky planet mystery

Journal article published in 2023 by L. Kaltenegger ORCID, R. C. Payne, Z. Lin ORCID, J. Kasting, L. Delrez ORCID
Distributing this paper is prohibited by the publisher
Distributing this paper is prohibited by the publisher

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT Venus and Earth provide astonishingly different views of the evolution of a rocky planet, raising the question of why these two rocky worlds evolved so differently. The recently discovered transiting Super-Earth LP 890-9c (TOI-4306c, SPECULOOS-2c) is a key to the question. It circles a nearby M6V star in 8.46 d. LP890-9c receives similar flux as modern Earth, which puts it very close to the inner edge of the Habitable Zone (HZ), where models differ strongly in their prediction of how long rocky planets can hold onto their water. We model the atmosphere of a hot LP890-9c at the inner edge of the HZ, where the planet could sustain several very different environments. The resulting transmission spectra differ considerably between a hot, wet exo-Earth, a steamy planet caught in a runaway greenhouse, and an exo-Venus. Distinguishing these scenarios from the planet’s spectra will provide critical new insights into the evolution of hot terrestrial planets into exo-Venus. Our model and spectra are available online as a tool to plan observations. They show that observing LP890-9c can provide key insights into the evolution of a rocky planet at the inner edge of the HZ as well as the long-term future of Earth.