Published in

American Astronomical Society, Astrophysical Journal, 2(942), p. 107, 2023

DOI: 10.3847/1538-4357/aca768

Links

Tools

Export citation

Search in Google Scholar

SDSS-IV MaNGA: How Galaxy Interactions Influence Active Galactic Nuclei

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract We present a comparative study of active galactic nuclei (AGN) between galaxy pairs and isolated galaxies with the final data release of the MaNGA integral field spectroscopic survey. We build a sample of 391 kinematic galaxy pairs within the footprint of the survey and select AGN using the survey's spectra. We use the comoving volume densities of the AGN samples to quantify the effects that tidal interactions have on the triggering of nuclear accretion. Our hypothesis is that the pair sample contains AGN that are triggered by not only stochastic accretion but also tidally induced accretion and correlated accretion. With the level of stochastically triggered AGN fixed by the control sample, we model the strength of tidally induced accretion and correlated accretion as a function of projected separation (r p ) and compare the model expectations with the observed volume densities of dual AGN and offset AGN (single AGN in a pair). At r p ∼ 10 kpc, we find that tidal interactions induce ∼30% more AGN than stochastic fueling and cause ∼12% of the offset AGN to become dual AGN because of correlations. The strength of both these effects decreases with increasing r p . We also find that the [O iii] luminosities of the AGN in galaxy pairs are consistent with those found in isolated galaxies, likely because stochastically fed AGN dominate even among close pairs. Our results illustrate that while we can detect tidally induced effects statistically, it is challenging to separate tidally induced AGN and stochastically triggered AGN in interacting galaxies.