Dissemin is shutting down on January 1st, 2025

Published in

American Association for the Advancement of Science, Science Translational Medicine, 725(15), 2023

DOI: 10.1126/scitranslmed.adi3363

Links

Tools

Export citation

Search in Google Scholar

Zinc prevents vaginal candidiasis by inhibiting expression of an inflammatory fungal protein

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Candida causes an estimated half-billion cases of vulvovaginal candidiasis (VVC) every year. VVC is most commonly caused by Candida albicans , which, in this setting, triggers nonprotective neutrophil infiltration, aggressive local inflammation, and symptomatic disease. Despite its prevalence, little is known about the molecular mechanisms underpinning the immunopathology of this fungal infection. In this study, we describe the molecular determinant of VVC immunopathology and a potentially straightforward way to prevent disease. In response to zinc limitation, C. albicans releases a trace mineral binding molecule called Pra1 (pH-regulated antigen). Here, we show that the PRA1 gene is strongly up-regulated during vaginal infections and that its expression positively correlated with proinflammatory cytokine concentrations in women. Genetic deletion of PRA1 prevented vaginal inflammation in mice, and application of a zinc solution down-regulated expression of the gene and also blocked immunopathology. We also show that treatment of women suffering from recurrent VVC with a zinc gel prevented reinfections. We have therefore identified a key mediator of symptomatic VVC, giving us an opportunity to develop a range of preventative measures for combatting this disease.