Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Antioxidants, 2(11), p. 191, 2022

DOI: 10.3390/antiox11020191

Links

Tools

Export citation

Search in Google Scholar

Prophylactic and Ameliorative Effects of PPAR-γ Agonist Pioglitazone in Improving Oxidative Stress, Germ Cell Apoptosis and Inflammation in Gentamycin-Induced Testicular Damage in Adult Male Albino Rats

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Peroxisome proliferator-activated receptor gamma (PPAR-γ) is ubiquitously expressed in testicular tissue and plays a crucial role in regulating various physiological processes. Pioglitazone (PIO) is one of the PPAR-γ agonists, having anti-oxidant and anti-inflammatory effects. Patients on gentamycin treatment may undergo serious side effects such as testicular damage. To the best of our knowledge, this was the first study to investigate the possible protective anti-inflammatory and anti-apoptotic effects of PIO on gentamycin-induced testicular damage. Fifty adult male Wistar albino rats included in the study as the control group (CTL) received normal saline; a gentamycin-induced testicular damage group (GM) received gentamycin (100 mg/kg); PIO5, PIO10, PIO20 groups received PIO at a dose of 5, 10, and 20 mg/ kg, respectively, for 21 days, and gentamycin was started at day 15 of the experiment for 6 days. The parameters of spermatozoa and histopathological alterations in the testes were significantly improved in the PIO20 group. Moreover, MDA levels, inflammatory mediators, and apoptotic Bax expression were decreased. The activity of glutathione peroxidase, catalase, total antioxidant capacity, and anti-apoptotic Bcl-2 genes expression were increased. It was concluded that PIO20 could protect against gentamycin-induced testicular damage in Wistar rats through its anti-oxidant, anti-inflammatory, and antiapoptotic effects.