Published in

MDPI, Remote Sensing, 9(15), p. 2381, 2023

DOI: 10.3390/rs15092381

Links

Tools

Export citation

Search in Google Scholar

Improving LandTrendr Forest Disturbance Mapping in China Using Multi-Season Observations and Multispectral Indices

Journal article published in 2023 by Dean Qiu, Yunjian Liang, Rong Shang ORCID, Jing M. Chen ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Forest disturbance detection is of great significance for understanding forest dynamics. The Landsat-based detection of the Trends in Disturbance and Recovery (LandTrendr) algorithm is widely used for forest disturbance mapping. However, there are still two limitations in LandTrendr: first, it only used for summer-composited observations, which may delay the detection of forest disturbances that occurred in autumn and winter by one year, and second, it detected all disturbance types simultaneously using a single spectral index, which may reduce the mapping accuracy for certain forest disturbance types. Here, we modified LandTrendr (mLandTrendr) for forest disturbance mapping in China by using multi-season observations and multispectral indices. Validations using the randomly selected 1957 reference forest disturbance samples across China showed that the overall accuracy (F1 score) of forest disturbance detection in China was improved by 21% with these two modifications. The mLandTrendr can quickly and accurately detect forest disturbance and can be extended to national and global forest disturbance mapping for various forest types.