Published in

American Geophysical Union, Geophysical Research Letters, 22(49), 2022

DOI: 10.1029/2022gl100950

Links

Tools

Export citation

Search in Google Scholar

Enhanced India‐Africa Carbon Uptake and Asia‐Pacific Carbon Release Associated With the 2019 Extreme Positive Indian Ocean Dipole

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

AbstractThe 2019 extreme positive Indian Ocean dipole drove climate extremes over Indian Ocean rim countries with unclear carbon‐cycle responses. We investigated its impact on net biome productivity (NBP) and its constituent fluxes, using the Global Carbon Assimilation System (GCASv2) product, process‐based model simulations from TRENDYv9, and satellite‐based gross primary productivity (GPP). By distinguishing two separate regions, the India‐Africa and Asia‐Pacific, GCASv2 indicated enhanced terrestrial carbon uptake of 0.23 ± 0.20 PgC and release of 0.38 ± 0.15 PgC, respectively, during September–December (SOND) 2019. These NBP anomalies had comparable magnitudes to those following the 2015 extreme El Niño which, however, caused the consistent carbon release in both regions. The TRENDYv9 model ensemble confirmed these NBP responses, albeit with smaller magnitudes. These regional NBP anomalies were related to soil moisture variations with a dominant role of GPP. Understanding the impact of IOD provides new insights into mechanisms driving interannual variations in regional carbon cycling.