Published in

American Astronomical Society, Astronomical Journal, 6(162), p. 256, 2021

DOI: 10.3847/1538-3881/ac26bd

Links

Tools

Export citation

Search in Google Scholar

TOI-2109: An Ultrahot Gas Giant on a 16 hr Orbit

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract We report the discovery of an ultrahot Jupiter with an extremely short orbital period of 0.67247414 ± 0.00000028 days (∼16 hr). The 1.347 ± 0.047 R Jup planet, initially identified by the Transiting Exoplanet Survey Satellite (TESS) mission, orbits TOI-2109 (TIC 392476080)—a T eff ∼ 6500 K F-type star with a mass of 1.447 ± 0.077 M , a radius of 1.698 ± 0.060 R , and a rotational velocity of v sin i * = 81.9 ± 1.7 km s−1. The planetary nature of TOI-2109b was confirmed through radial-velocity measurements, which yielded a planet mass of 5.02 ± 0.75 M Jup. Analysis of the Doppler shadow in spectroscopic transit observations indicates a well-aligned system, with a sky-projected obliquity of λ = 1.°7 ± 1.°7. From the TESS full-orbit light curve, we measured a secondary eclipse depth of 731 ± 46 ppm, as well as phase-curve variations from the planet’s longitudinal brightness modulation and ellipsoidal distortion of the host star. Combining the TESS-band occultation measurement with a K s -band secondary eclipse depth (2012 ± 80 ppm) derived from ground-based observations, we find that the dayside emission of TOI-2109b is consistent with a brightness temperature of 3631 ± 69 K, making it the second hottest exoplanet hitherto discovered. By virtue of its extreme irradiation and strong planet–star gravitational interaction, TOI-2109b is an exceptionally promising target for intensive follow-up studies using current and near-future telescope facilities to probe for orbital decay, detect tidally driven atmospheric escape, and assess the impacts of H2 dissociation and recombination on the global heat transport.