Dissemin is shutting down on January 1st, 2025

Published in

arXiv, 2021

DOI: 10.48550/arxiv.2103.02219

Links

Tools

Export citation

Search in Google Scholar

Revealing the diverse magnetic field morphologies in Taurus dense cores with sensitive sub-millimeter polarimetry

Journal article published in 2021 by Chakali Eswaraiah, Ray S. Furuya, Tetsuo Hasegawa, Derek Ward-Thompson, Keping Qiu, Nagayoshi Ohashi, Kate Pattle, Sarah Sadavoy, Charles L. H. Hull, David Berry, Yasuo Doi, Tao-Chung Ching, Shih-Ping Lai, Dalei Li, Jia-Wei Wang ORCID and other authors.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

We have obtained sensitive dust continuum polarization observations at 850 $μ$m in the B213 region of Taurus using POL-2 on SCUBA-2 at the James Clerk Maxwell Telescope (JCMT), as part of the BISTRO (B-fields in STar-forming Region Observations) survey. These observations allow us to probe magnetic field (B-field) at high spatial resolution ($∼$2000 au or $∼$0.01 pc at 140 pc) in two protostellar cores (K04166 and K04169) and one prestellar core (Miz-8b) that lie within the B213 filament. Using the Davis-Chandrasekhar-Fermi method, we estimate the B-field strengths in K04166, K04169, and Miz-8b to be 38$±$14 $μ$G, 44$±$16 $μ$G, and 12$±$5 $μ$G, respectively. These cores show distinct mean B-field orientations. B-field in K04166 is well ordered and aligned parallel to the orientations of the core minor axis, outflows, core rotation axis, and large-scale uniform B-field, in accordance with magnetically regulated star formation via ambipolar diffusion taking place in K04166. B-field in K04169 is found to be ordered but oriented nearly perpendicular to the core minor axis and large-scale B-field, and not well-correlated with other axes. In contrast, Miz-8b exhibits disordered B-field which show no preferred alignment with the core minor axis or large-scale field. We found that only one core, K04166, retains a memory of the large-scale uniform B-field. The other two cores, K04169 and Miz-8b, are decoupled from the large-scale field. Such a complex B-field configuration could be caused by gas inflow onto the filament, even in the presence of a substantial magnetic flux.