Published in

Nature Research, Communications Earth & Environment, 1(4), 2023

DOI: 10.1038/s43247-023-00678-9

Links

Tools

Export citation

Search in Google Scholar

Large variations in afforestation-related climate cooling and warming effects across short distances

Journal article published in 2023 by Shani Rohatyn ORCID, Eyal Rotenberg, Fyodor Tatarinov, Yohay Carmel, Dan Yakir ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractClimate-related benefits of afforestation depend on the balance of the often-contrasting effects of biogeochemical (carbon sequestration) and biogeophysical (radiation balance) effects. These effects are known to vary at the continental scale (e.g., from boreal to tropical regions). Here, we show in a four-year study that the biogeochemical vs. biogeophysical balance in paired forested and non-forested ecosystems across short distances (approximately 200 Km) and steep aridity gradient (aridity index 0.64 to 0.18) can change dramatically. The required time for the forestation cooling effects via carbon sequestration, to surpass warming effects associated with the forests’ reduced albedo and suppressed longwave radiation, decreased from 213 years in the driest sites to 73 years in the intermediate and 43 years in the wettest sites. Climate-related benefits of forestation, previously considered at large-spatial scales, should be considered at high-spatial resolutions in climate-change mitigation programs aimed at taking advantage of the vast non-forested dry regions.