Full text: Download
In the last few decades there has been increasing interest in the commercial usage of the stratosphere, especially for Earth observation systems. Stratospheric platforms allow Earth monitoring at a regional scale with persistency toward a limited area. For this reason, accurate meteorological forecasts are needed in order to guarantee stationarity. The main aim of this work is to provide a review of wind prediction techniques in the stratosphere, achieved by the most popular global models, such as ECMWF IFS, NCEP GFS and ICON. Then, the capabilities of the COSMO limited area model to reproduce the wind speed in the stratosphere are evaluated considering a model configuration with very high resolution (about 1 km) over a domain located in Southern Italy, assuming the radio sounding data at Pratica di Mare airport as the reference. Vertical profiles were analyzed for selected days, highlighting good performances, though improvements can be achieved by adopting a fifth-order interpolation of the model data. Finally, monthly wind speed time series for selected heights were post-processed by means of fast Fourier transform, revealing the existence of main frequencies and the presence of a scaling regime and a power law of the form f−β over a broad range of time scales, in the Fourier space. The exponent spectral β is close to the exact 5/3 Kolmogorov value for all the datasets.